Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Life Sci ; 348: 122695, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38710285

RESUMO

AIMS: To evaluate the basal release of 6-nitrodopamine (6-ND) from human isolated seminal vesicles (HISV) and to characterize its action and origin. MAIN METHODS: Left HISV obtained from patients undergoing prostatectomy surgery was suspended in a 3-mL organ bath containing warmed (37 °C) and gassed (95%O2:5%CO2) Krebs-Henseleit's solution (KHS) with ascorbic acid. An aliquot of 2 mL of the supernatant was used to quantify catecholamines by LC-MS/MS. For functional studies, concentration-responses curves to catecholamines were obtained, and pEC50 and Emax values were calculated. Detection of tyrosine hydroxylase and S100 protein were also carried out by both immunohistochemistry and fluorescence in-situ hybridization assays (FISH). KEY FINDINGS: Basal release of 6-ND was higher than the other catecholamines (14.76 ± 14.54, 4.99 ± 6.92, 3.72 ± 4.35 and 5.13 ± 5.76 nM for 6-ND, noradrenaline, adrenaline, and dopamine, respectively). In contrast to the other catecholamines, the basal release of 6-ND was not affected by the sodium current (Nav) channel inhibitor tetrodotoxin (1 µM; 10.4 ± 8.9 and 10.4 ± 7.9 nM, before and after tetrodotoxin, respectively). All the catecholamines produced concentration-dependent HISV contractions (pEC50 4.1 ± 0.2, 4.9 ± 0.3, 5.0 ± 0.3, and 3.9 ± 0.8 for 6-ND, noradrenaline, adrenaline, and dopamine, respectively), but 6-ND was 10-times less potent than noradrenaline and adrenaline. However, preincubation with very low concentration of 6-ND (10-8 M, 30 min) produced significant leftward shifts of the concentration-response curves to noradrenaline. Immunohistochemical and FISH assays identified tyrosine hydroxylase in tissue epithelium of HISV strips. SIGNIFICANCE: Epithelium-derived 6-ND is the major catecholamine released from human isolated seminal vesicles and that modulates smooth muscle contractility by potentiating noradrenaline-induced contractions.


Assuntos
Dopamina , Norepinefrina , Glândulas Seminais , Humanos , Masculino , Norepinefrina/farmacologia , Norepinefrina/metabolismo , Glândulas Seminais/efeitos dos fármacos , Glândulas Seminais/metabolismo , Dopamina/metabolismo , Dopamina/farmacologia , Pessoa de Meia-Idade , Epitélio/metabolismo , Epitélio/efeitos dos fármacos , Contração Muscular/efeitos dos fármacos , Idoso , Catecolaminas/metabolismo
2.
Life Sci ; 326: 121801, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37244364

RESUMO

6-Nitrodopamine (6-ND) is a novel catecholamine that is released from human umbilical cord vessels, and it causes vascular relaxation by acting as a dopamine D2-receptor antagonist. Here it was investigated whether human peripheral vessels obtained from patients who have undergone surgery for leg amputation release 6-ND, and its action in these tissues. Popliteal artery and vein strips present basal release of 6-ND, as measured by liquid chromatography coupled to tandem mass spectrometry. The release was significantly reduced when the tissues were pre-treated with the nitric oxide synthase inhibitor L-NAME (100 µM), or when the endothelium was mechanically removed. In U-46619 (3 nM) pre-contracted rings, 6-ND induced concentration-dependent relaxations (pEC50 8.18 ± 0.05 and 8.40 ± 0.08, in artery and vein rings, respectively). The concentration-dependent relaxations induced by 6-ND were unaffected in tissues pre-treated with L-NAME, but significantly reduced in tissues where the endothelium has been mechanically removed. In U-46619 (3 nM) pre-contracted rings, the selective dopamine D2 receptor antagonist L-741,626 also caused concentration-dependent relaxations (pEC50 8.92 ± 0.22 and 8.79 ± 0.19, in artery and vein rings, respectively). The concentration-dependent relaxations induced by L-741,626 were unaffected in tissues pre-treated with L-NAME, but significantly reduced in tissues where the endothelium has been mechanically removed. This is the first demonstration that 6-nitrodopamine is released from human peripheral artery and vein rings. The results also indicate that endothelium-derived dopamine is a major contractile agent in the popliteal artery and vein, and that selective dopamine D2-receptor antagonists such as 6-ND, may have therapeutic potential in the treatment of human peripheral vascular diseases.


Assuntos
Dopamina , Artéria Poplítea , Humanos , NG-Nitroarginina Metil Éster/farmacologia , Dopamina/farmacologia , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/farmacologia , Endotélio Vascular , Óxido Nítrico/farmacologia
3.
PLoS One ; 17(11): e0277396, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36395271

RESUMO

Magnetic nanoparticles (MNps) have become powerful tools for multiple biomedical applications such as hyperthermia drivers, magnetic resonance imaging (MRI) vectors, as well as drug-delivery systems. However, their toxic effects on human health have not yet been fully elucidated, especially in view of their great diversity of surface modifications and functionalizations. Citrate-coating of MNps often results in increased hydrophilicity, which may positively impact their performance as drug-delivery systems. Nonetheless, the consequences on the intrinsic toxicity of such MNps are unpredictable. Herein, novel magnetite (Fe3O4) nanoparticles covered with citrate were synthesized and their potential intrinsic acute toxic effects were investigated using in vitro and in vivo models. The proposed synthetic pathway turned out to be simple, quick, inexpensive, and reproducible. Concerning toxicity risk assessment, these citrate-coated iron oxide nanoparticles (IONps) did not affect the in vitro viability of different cell lines (HaCaT and HepG2). Moreover, the in vivo acute dose assay (OECD test guideline #425) showed no alterations in clinical parameters, relevant biochemical variables, or morphological aspects of vital organs (such as brain, liver, lung and kidney). Iron concentrations were slightly increased in the liver, as shown by Graphite Furnace Atomic Absorption Spectrometry and Perls Prussian Blue Staining assays, but this finding was considered non-adverse, given the absence of accompanying functional/clinical repercussions. In conclusion, this study reports on the development of a simple, fast and reproducible method to obtain citrate-coated IONps with promising safety features, which may be used as a drug nanodelivery system in the short run. (263 words).


Assuntos
Nanopartículas de Magnetita , Humanos , Nanopartículas de Magnetita/toxicidade , Nanopartículas de Magnetita/química , Ácido Cítrico , Compostos Férricos/toxicidade , Compostos Férricos/química , Citratos , Imageamento por Ressonância Magnética , Óxido Ferroso-Férrico
4.
Artigo em Inglês | MEDLINE | ID: mdl-32289528

RESUMO

The role of endothelium in the electrical-field stimulation (EFS)-induced contractions of Chelonoidis carbonaria aorta was investigated. Contractions were evaluated in the presence and absence of L-NAME (100 µM), tetrodotoxin (1 µM), phentolamine (10 and 100 µM), phenoxybenzamine (1 and 10 µM), prazosin (100 µM), idazoxan (100 µM), atropine (10 µM), D-tubocurarine (10 µM) or indomethacin (10 µM). EFS-induced contraction was also carried out in endothelium-denuded rings. EFS-induced contraction was investigated by the sandwich assay. Concentration curves to endothelin-1 (0.1-100 nM) and U46619 (0.001-100 µM) were also constructed to calculate both Emax and EC50. EFS at 16 Hz contracted Chelonoidis aorta, which was almost abolished by the endothelium removal. The addition of L-NAME increased the EFS response (2.0 ± 0.4 and 8.3 ± 1.9 mN). In L-NAME treated aortic rings, tetrodotoxin did not change the EFS-response (5.1 ± 1.8 and 4.9 ± 1.7 mN). Indomethacin, atropine and d-tubucurarine also did not affect the EFS-response. Phentolamine at 10 µM did not change the EFS-induced contraction; however, at 100 µM, reduced it (3.9 ± 1 and 1.9 ± 0.3 mN). Prazosin and idazoxan did not change EFS-induced contractions. Phenoxybenzamine at 1 µM reduced by 76% (9.6 ± 3.4 and 2.3 ± 0.8 mN) and at 10 µM by 90% the EFS response. Immunohistochemistry identified tyrosine hydroxylase in the endothelium and brain, whereas S100 protein was found only in brain. In conclusion, endothelium modulates EFS-induced contractions in Chelonoidis aortic rings and this modulation may be due to endothelium-derived catecholamines, possibly dopamine.


Assuntos
Aorta/metabolismo , Endotélio/metabolismo , Contração Muscular , Tartarugas/metabolismo , Animais , Dopamina/metabolismo , Estimulação Elétrica , Feminino , Masculino
5.
Biochim Biophys Acta Gen Subj ; 1864(1): 129448, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31676293

RESUMO

Aurora kinases are essential enzymes for the control of cell cycle. The specific role of aurora kinase A (AURKA) is the regulation of spindle assembly and stability by promoting centrosome maturation and separation. Because AURKA is an essential protein for the normal occurrence of the cycle, mutations and deregulations in the activities of this protein are associated with several cancers. The kinase activity of AURKA is controlled by autocatalytic phosphorylation, which is facilitated after binding to a regulator protein, the Target Protein for Xenopuskinesin-like protein 2 (TPX2). SCOPE OF REVIEW: This review highlights the physiological and pathophysiological properties of AURKA, the structure of the AURKA/TPX2 complex and the main structural features that can be explored for the design of selective AURKA inhibitors. MAJOR CONCLUSIONS: The design of selective AURKA inhibitors remains as a challenge as most of the currently available inhibitors target only the ATP binding cleft and are nonselective among kinases. However, by exploring the inactive form of the kinase, researchers get access to an adjacent hydrophobic pocket, allowing the design of more selective inhibitors. Additionally, the possibility of designing potent allosteric AURKA inhibitors look very promising from the clinical perspective, since it tends to yield the most selective class of compounds. GENERAL SIGNIFICANCE: Herein we detailed the binding modes of the most selective AURKA inhibitors currently reported. We believe this will aid researchers in defining the structural patterns necessary for selective AURKA inhibition, guiding the design of more potent compounds to be therapeutically explored in cancer patients.


Assuntos
Aurora Quinase A/genética , Proteínas de Ciclo Celular/química , Proteínas Associadas aos Microtúbulos/química , Neoplasias/tratamento farmacológico , Inibidores de Proteínas Quinases/química , Regulação Alostérica/efeitos dos fármacos , Aurora Quinase A/antagonistas & inibidores , Aurora Quinase A/ultraestrutura , Proteínas de Ciclo Celular/genética , Humanos , Proteínas Associadas aos Microtúbulos/genética , Neoplasias/genética , Neoplasias/patologia , Fosforilação/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Conformação Proteica/efeitos dos fármacos , Inibidores de Proteínas Quinases/uso terapêutico
6.
PLoS One ; 13(9): e0203573, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30199552

RESUMO

Endothelium is the main source of catecholamine release in the electrical-field stimulation (EFS)-induced aortic contractions of the non- venomous snake Panterophis guttatus. However, adrenergic vasomotor control in venomous snakes such as Crotalus durissus terrificus and Bothrops jararaca has not yet been investigated. Crotalus and Bothrops aortic rings were mounted in an organ bath system. EFS-induced aortae contractions were performed in the presence and absence of guanethidine (30 µM), phentolamine (10 µM) or tetrodotoxin (1 µM). Frequency-induced contractions were also performed in aortae with endothelium removed. Immunohistochemical localization of both tyrosine hydroxylase (TH) and S-100 protein in snake aortic rings and brains, as well as in human tissue (paraganglioma tumour) were carried out. EFS (4 to 16 Hz) induced frequency-dependent aortic contractions in both Crotalus and Bothrops. The EFS-induced contractions were significantly reduced in the presence of either guanethidine or phentolamine in both snakes (p<0.05), whereas tetrodotoxin had no effect in either. Removal of the endothelium abolished the EFS-induced contractions in both snakes aortae (p<0.05). Immunohistochemistry revealed TH localization in endothelium of both snake aortae and human vessels. Nerve fibers were not observed in either snake aortae. In contrast, both TH and S100 protein were observed in snake brains and human tissue. Vascular endothelium is the main source of catecholamine release in EFS-induced contractions in Crotalus and Bothrops aortae. Human endothelial cells also expressed TH, indicating that endothelium- derived catecholamines possibly occur in mammalian vessels.


Assuntos
Aorta/efeitos dos fármacos , Bothrops/metabolismo , Catecolaminas/metabolismo , Crotalus/metabolismo , Estimulação Elétrica , Animais , Catecolaminas/farmacologia , Endotélio Vascular/efeitos dos fármacos , Guanetidina/metabolismo , Guanetidina/farmacologia , Técnicas In Vitro , Fentolamina/metabolismo , Fentolamina/farmacologia , Proteínas S100/metabolismo , Tetrodotoxina/metabolismo , Tetrodotoxina/farmacologia , Tirosina 3-Mono-Oxigenase/metabolismo
7.
Toxicol Pathol ; 43(3): 400-10, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25341428

RESUMO

Simvastatin, a competitive inhibitor of HMG-CoA reductase widely used in the treatment and prevention of hyperlipidemia-related diseases, has recently been associated to in vitro anticancer stem cell (CSC) actions. However, these effects have not been confirmed in vivo. To assess in vivo anti-CSC effects of simvastatin, female Sprague-Dawley rats with 7,12-dimethyl-benz(a)anthracene (DMBA)-induced mammary cancer and control animals were treated for 14 days with either simvastatin (20 or 40 mg/kg/day) or soybean oil (N = 60). Tumors and normal breast tissues were removed for pathologic examination and immunodetection of CSC markers. At 40 mg/kg/day, simvastatin significantly reduced tumor growth and the expression of most CSC markers. The reduction in tumor growth (80%) could not be explained solely by the decrease in CSCs, since the latter accounted for less than 10% of the neoplasia (differentiated cancer cells were also affected). Stem cells in normal, nonneoplastic breast tissues were not affected by simvastatin. Simvastatin was also associated with a significant decrease in proliferative activity but no increase in cell death. In conclusion, this is the first study to confirm simvastatin anti-CSC actions in vivo, further demonstrating that this effect is specific for neoplastic cells, but not restricted to CSCs, and most likely due to inhibition of cell proliferation.


Assuntos
9,10-Dimetil-1,2-benzantraceno/toxicidade , Biomarcadores Tumorais/metabolismo , Carcinógenos/toxicidade , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Neoplasias Mamárias Experimentais/induzido quimicamente , Neoplasias Mamárias Experimentais/metabolismo , Células-Tronco Neoplásicas/metabolismo , Sinvastatina/farmacologia , Animais , Antígenos CD/metabolismo , Biomarcadores , Progressão da Doença , Feminino , Imuno-Histoquímica , Necrose , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...